Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.323
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116195, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479315

RESUMO

Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.


Assuntos
Fluoretos , Proteína HMGB1 , Nefropatias , Rutina , Animais , Ratos , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Fluoretos/metabolismo , Fluoretos/toxicidade , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Lisossomos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Rutina/farmacologia , Fluoreto de Sódio/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo
2.
Adv Mater ; 35(10): e2209603, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36524741

RESUMO

Glutathione (GSH)-activatable probes hold great promise for in vivo cancer imaging, but are restricted by their dependence on non-selective intracellular GSH enrichment and uncontrollable background noise. Here, a holographically activatable nanoprobe caging manganese tetraoxide is shown for tumor-selective contrast enhancement in magnetic resonance imaging (MRI) through cooperative GSH/albumin-mediated cascade signal amplification in tumors and rapid elimination in normal tissues. Once targeting tumors, the endocytosed nanoprobe effectively senses the lysosomal microenvironment to undergo instantaneous decomposition into Mn2+ with threshold GSH concentration of ≈ 0.12 mm for brightening MRI signals, thus achieving high contrast tumor imaging and flexible monitoring of GSH-relevant cisplatin resistance during chemotherapy. Upon efficient up-regulation of extracellular GSH in tumor via exogenous injection, the relaxivity-silent interstitial nanoprobe remarkably evolves into Mn2+ that are further captured/retained and re-activated into ultrahigh-relaxivity-capable complex by stromal albumin in the tumor, and simultaneously allows the renal clearance of off-targeted nanoprobe in the form of Mn2+ via lymphatic vessels for suppressing background noise to distinguish tiny liver metastasis. These findings demonstrate the concept of holographic tumor activation via both tumor GSH/albumin-mediated cascade signal amplification and simultaneous background suppression for precise tumor malignancy detection, surveillance, and surgical guidance.


Assuntos
Albuminas , Glutationa , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Sondas Moleculares , Neoplasias , Glutationa/administração & dosagem , Glutationa/farmacocinética , Glutationa/farmacologia , Sondas Moleculares/administração & dosagem , Sondas Moleculares/farmacocinética , Sondas Moleculares/farmacologia , Albuminas/administração & dosagem , Albuminas/farmacocinética , Albuminas/farmacologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Aumento da Imagem/métodos , Holografia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Nanopartículas Metálicas/administração & dosagem , Transferrina/administração & dosagem , Transferrina/farmacocinética , Transferrina/farmacologia , Distribuição Tecidual , Células A549 , Humanos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Cisplatino/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia
3.
Ecotoxicol Environ Saf ; 249: 114381, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508801

RESUMO

Black carbon (BC) is an important component of atmospheric PM 2.5 and the second largest contributor to global warming. 1,4-naphthoquinone-coated BC (1,4 NQ-BC) is a secondary particle with great research value, so we chose 1,4 NQ-BC as the research object. In our study, mitochondria and lysosomes were selected as targets to confirm whether they were impaired by 1,4 NQ-BC, label free proteomics technology, fluorescent probes, qRT-PCR and western blots were used to investigate the mechanism of 1,4 NQ-BC toxicity. We found 494 differentially expressed proteins (DEPs) in mitochondria and 86 DEPs in lysosomes using a proteomics analysis of THP1 cells after 1,4 NQ-BC exposure for 24 h. Through proteomics analysis and related experiments, we found that 1,4 NQ-BC can damage THP-1-M cells by obstructing autophagy, increasing lysosomal membrane permeability, disturbing the balance of ROS, and reducing the mitochondrial membrane potential. It is worth noting that 1,4 NQ-BC prevented the removal of FTL by inhibiting autophagy, and increased IL-33 level by POR/FTL/IL-33 axis. We first applied proteomics to study the damage mechanism of 1,4 NQ-BC on THP1 cells. Our research will enrich knowledge of the mechanism by which 1,4 NQ-BC damages human macrophages and identify important therapeutic targets and adverse outcome pathways for 1,4 NQ-BC-induced damage.


Assuntos
Apoferritinas , Autofagia , Interleucina-33 , Lisossomos , Naftoquinonas , Fuligem , Humanos , Apoferritinas/metabolismo , Autofagia/efeitos dos fármacos , Interleucina-33/metabolismo , Macrófagos/efeitos dos fármacos , Naftoquinonas/toxicidade , Fuligem/toxicidade , Regulação para Cima , Lisossomos/efeitos dos fármacos
4.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805938

RESUMO

Mutations in LRRK2 and GBA1 are key contributors to genetic risk of developing Parkinson's disease (PD). To investigate how LRRK2 kinase activity interacts with GBA and contributes to lysosomal dysfunctions associated with the pathology of PD. The activity of the lysosomal enzyme ß-Glucocerebrosidase (GCase) was assessed in a human neuroglioma cell model treated with two selective inhibitors of LRKK2 kinase activity (LRRK2-in-1 and MLi-2) and a GCase irreversible inhibitor, condutirol-beta-epoxide (CBE), under 24 and 72 h experimental conditions. We observed levels of GCase activity comparable to controls in response to 24 and 72 h treatments with LRRK2-in-1 and MLi-2. However, GBA protein levels increased upon 72 h treatment with LRRK2-in-1. Moreover, LC3-II protein levels were increased after both 24 and 72 h treatments with LRRK2-in-1, suggesting an activation of the autophagic pathway. These results highlight a possible regulation of lysosomal function through the LRRK2 kinase domain and suggest an interplay between LRRK2 kinase activity and GBA. Although further investigations are needed, the enhancement of GCase activity might restore the defective protein metabolism seen in PD.


Assuntos
Glucosilceramidase , Doença de Parkinson , Linhagem Celular , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Glioma/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Inositol/análogos & derivados , Inositol/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
5.
Proc Natl Acad Sci U S A ; 119(11): e2121609119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259016

RESUMO

SignificanceNeurodegenerative diseases are poorly understood and difficult to treat. One common hallmark is lysosomal dysfunction leading to the accumulation of aggregates and other undegradable materials, which cause damage to brain resident cells. Lysosomes are acidic organelles responsible for breaking down biomolecules and recycling their constitutive parts. In this work, we find that the antiinflammatory and neuroprotective compound, discovered via a phenotypic screen, imparts its beneficial effects by targeting the lysosome and restoring its function. This is established using a genome-wide CRISPRi target identification screen and then confirmed using a variety of lysosome-targeted studies. The resulting small molecule from this study represents a potential treatment for neurodegenerative diseases as well as a research tool for the study of lysosomes in disease.


Assuntos
Anti-Inflamatórios/farmacologia , Lisossomos/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Animais , Anti-Inflamatórios/química , Biomarcadores , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Perfilação da Expressão Gênica , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Smad/agonistas
6.
Nat Commun ; 13(1): 931, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177641

RESUMO

Koolen-de Vries syndrome (KdVS) is a rare disorder caused by haploinsufficiency of KAT8 regulatory NSL complex subunit 1 (KANSL1), which is characterized by intellectual disability, heart failure, hypotonia, and congenital malformations. To date, no effective treatment has been found for KdVS, largely due to its unknown pathogenesis. Using siRNA screening, we identified KANSL1 as an essential gene for autophagy. Mechanistic study shows that KANSL1 modulates autophagosome-lysosome fusion for cargo degradation via transcriptional regulation of autophagosomal gene, STX17. Kansl1+/- mice exhibit impairment in the autophagic clearance of damaged mitochondria and accumulation of reactive oxygen species, thereby resulting in defective neuronal and cardiac functions. Moreover, we discovered that the FDA-approved drug 13-cis retinoic acid can reverse these mitophagic defects and neurobehavioral abnormalities in Kansl1+/- mice by promoting autophagosome-lysosome fusion. Hence, these findings demonstrate a critical role for KANSL1 in autophagy and indicate a potentially viable therapeutic strategy for KdVS.


Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Mitofagia/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/imunologia , Anormalidades Múltiplas/patologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/patologia , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/imunologia , Modelos Animais de Doenças , Feminino , Haploinsuficiência/imunologia , Células HeLa , Humanos , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/imunologia , Deficiência Intelectual/patologia , Isotretinoína/farmacologia , Isotretinoína/uso terapêutico , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Transgênicos , Mitofagia/efeitos dos fármacos , Mitofagia/imunologia , Neurônios , Proteínas Nucleares/metabolismo , Cultura Primária de Células
7.
Aging (Albany NY) ; 14(3): 1233-1252, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166693

RESUMO

The protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK), a key ER stress sensor of the unfolded protein response (UPR), can confer beneficial effects by facilitating the removal of cytosolic aggregates through the autophagy-lysosome pathway (ALP). In neurodegenerative diseases, the ALP ameliorates the accumulation of intracellular protein aggregates in the brain. Transcription factor-EB (TFEB), a master regulator of the ALP, positively regulates key genes involved in the cellular degradative pathway. However, in neurons, the role of PERK activation in mitigating amyloidogenesis by ALP remains unclear. In this study, we found that SB202190 selectively activates PERK independently of its inhibition of p38 mitogen-activated protein kinase, but not inositol-requiring transmembrane kinase/endoribonuclease-1α (IRE1α) or activating transcription factor 6 (ATF6), in human neuroblastoma cells. PERK activation by SB202190 was dependent on mitochondrial ROS production and promoted Ca2+-calcineurin activation. The activation of the PERK-Ca2+-calcineurin axis by SB202190 positively affects TFEB activity to increase ALP in neuroblastoma cells. Collectively, our study reveals a novel physiological mechanism underlying ALP activation, dependent on PERK activation, for ameliorating amyloidogenesis in neurodegenerative diseases.


Assuntos
Amiloide , Endorribonucleases , Imidazóis , Neuroblastoma , Piridinas , eIF-2 Quinase , Amiloide/biossíntese , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Humanos , Imidazóis/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases , Piridinas/farmacologia , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
8.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191376

RESUMO

Large-scale insecticide application is a primary weapon in the control of insect pests in agriculture. However, a growing body of evidence indicates that it is contributing to the global decline in population sizes of many beneficial insect species. Spinosad emerged as an organic alternative to synthetic insecticides and is considered less harmful to beneficial insects, yet its mode of action remains unclear. Using Drosophila, we show that low doses of spinosad antagonize its neuronal target, the nicotinic acetylcholine receptor subunit alpha 6 (nAChRα6), reducing the cholinergic response. We show that the nAChRα6 receptors are transported to lysosomes that become enlarged and increase in number upon low doses of spinosad treatment. Lysosomal dysfunction is associated with mitochondrial stress and elevated levels of reactive oxygen species (ROS) in the central nervous system where nAChRα6 is broadly expressed. ROS disturb lipid storage in metabolic tissues in an nAChRα6-dependent manner. Spinosad toxicity is ameliorated with the antioxidant N-acetylcysteine amide. Chronic exposure of adult virgin females to low doses of spinosad leads to mitochondrial defects, severe neurodegeneration, and blindness. These deleterious effects of low-dose exposures warrant rigorous investigation of its impacts on beneficial insects.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Macrolídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster , Combinação de Medicamentos , Inseticidas/administração & dosagem , Inseticidas/farmacologia , Macrolídeos/administração & dosagem
9.
Toxicol Lett ; 357: 73-83, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999165

RESUMO

MeHg, an environmental toxicant, is highly toxic to the central nervous system. Recent studies have reported that LMP is an important way in the lysosomal damage. However, the role and molecular mechanism of LMP in MeHg-induced neurotoxicity remain unknown. To study MeHg-induced LMP, we used 10µM MeHg to treat SH-SY5Y cells and 2µM MeHg to treat rat cerebral cortical neurons. Acridine orange (AO) staining and analysis of cathepsin B (CTSB) release were used to determine LMP. We found that MeHg reduced red AO fluorescence and induced CTSB release from lysosomes to the cytoplasm in a time-dependent manner. Moreover, pretreatment with the CTSB inhibitor alleviated cytotoxicity in neuronal cells. These results indicate MeHg induces LMP and subsequent CTSB-dependent cytotoxicity in neuronal cells. Bax is a pore-forming protein, which is involved in mitochondrial outer membrane permeabilization. Intriguingly, we demonstrated that MeHg induced Bax to translocate to lysosomes by using immunofluorescence and Western blot analysis of subcellular fractions. Furthermore, downregulating Bax expression suppressed MeHg-induced LMP. Bax subcellular localization is regulated by protein interaction with the cytoplasmic 14-3-3. Our previous study demonstrated that JNK participated in neurotoxicity through regulating protein interaction. In the current study, we showed that JNK dissociated Bax-14-3-3 complex to facilitate Bax lysosomal translocation. Finally, inhibition of the JNK/Bax pathway could alleviate MeHg-induced cytotoxicity in neuronal cells. The present study implies that inhibiting lysosomal damage (LMP)-related signaling might alleviate MeHg neurotoxicity.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Compostos de Metilmercúrio/toxicidade , Neurônios/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Substâncias Perigosas/toxicidade , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
10.
Biochem Biophys Res Commun ; 592: 31-37, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016149

RESUMO

Tributyltin (TBT) is an environmental pollutant that remains in marine sediments and is toxic to mammals. For example, TBT elicits neurotoxic and immunosuppressive effects on rats. However, it is not entirely understood how TBT causes toxicity. Autophagy plays a pivotal role in protein quality control and eliminates aggregated proteins and damaged organelles. We previously reported that TBT dephosphorylates mammalian target of rapamycin (mTOR), which may be involved in enhancement of autophagosome synthesis, in primary cultures of cortical neurons. Autophagosomes can accumulate due to enhancement of autophagosome synthesis or inhibition of autophagic degradation, and we did not clarify whether TBT alters autophagic flux. Here, we investigated the mechanism by which TBT causes accumulation of autophagosomes in SH-SY5Y cells. TBT inhibited autophagy without affecting autophagosome-lysosome fusion before it caused cell death. TBT dramatically decreased the acidity of lysosomes without affecting lysosomal membrane integrity. TBT decreased the mature protein level of cathepsin B, and this may be related to the decrease in lysosomal acidity. These results suggest that TBT inhibits autophagic degradation by decreasing lysosomal acidity. Autophagy impairment may be involved in the mechanism underlying neuronal death and/or T-cell-dependent thymus atrophy induced by TBT.


Assuntos
Autofagia , Lisossomos/metabolismo , Compostos de Trialquitina/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrólise , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo
11.
FEBS Lett ; 596(4): 491-509, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007347

RESUMO

In autophagy, LC3-positive autophagophores fuse and encapsulate the autophagic cargo in a double-membrane structure. In contrast, lipidated LC3 (LC3-II) is directly formed at the phagosomal membrane in LC3-associated phagocytosis (LAP). In this study, we dissected the effects of autophagy inhibitors on LAP. SAR405, an inhibitor of VPS34, reduced levels of LC3-II and inhibited LAP. In contrast, the inhibitors of endosomal acidification bafilomycin A1 and chloroquine increased levels of LC3-II, due to reduced degradation in acidic lysosomes. However, while bafilomycin A1 inhibited LAP, chloroquine did not. Finally, EACC, which inhibits the fusion of autophagosomes with lysosomes, promoted LC3 degradation possibly by the proteasome. Targeting LAP with small molecule inhibitors is important given its emerging role in infectious and autoimmune diseases.


Assuntos
Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/genética , Diferenciação Celular , Cloroquina/farmacologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fagocitose/genética , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/metabolismo , Piridinas/farmacologia , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Zimosan/metabolismo
12.
Food Chem Toxicol ; 161: 112819, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35038498

RESUMO

Beauvericin (BEA) and enniatin B (ENNB) are emerging mycotoxins frequently detected in plant-based fish feed. With ionophoric properties, they have shown cytotoxic potential in mammalian models. Sensitivity in fish is still largely unknown. Primary hepatocytes isolated from Atlantic salmon (Salmo salar) were used as a model and exposed to BEA and ENNB (0.05-10 µM) for 48 h. Microscopy, evaluation of cell viability, total ATP, total H2O2, total iron content, total Gpx enzyme activity, and RNA sequencing were used to characterize the toxicodynamics of BEA and ENNB. Both mycotoxins became cytotoxic at ≥ 5 µM, causing condensation of the hepatocytes followed by formation of blister-like protrusions on the cell's membrane. RNA sequencing analysis at sub-cytotoxic levels indicated BEA and ENNB exposed hepatocytes to experience increased energy expenditure, elevated oxidative stress, and iron homeostasis disturbances sensitizing the hepatocytes to ferroptosis. The present study provides valuable knowledge disclosing the toxic action of these mycotoxins in Atlantic salmon primary hepatocytes.


Assuntos
Depsipeptídeos/toxicidade , Ferroptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Ferro/metabolismo , Fígado/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/administração & dosagem , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Lisossomos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Salmo salar
13.
FEBS Lett ; 596(4): 437-448, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040120

RESUMO

A key cofactor of several enzymes implicated in DNA synthesis, repair, and methylation, folate has been shown to be required for normal cell growth and replication and is the basis for cancer chemotherapy using antifolates. γ-Glutamyl hydrolase (GGH) catalyzes the removal of γ-polyglutamate tails of folylpoly-/antifolylpoly-γ-glutamates to facilitate their export out of the cell, thereby maintaining metabolic homeostasis of folates or pharmacological efficacy of antifolates. However, the factors that control or modulate GGH function are not well understood. In this study, we show that intact GGH is not indispensable for the chemosensitivity and growth of acute lymphoblastic leukemia (ALL) cells, whereas GGH lacking N-terminal signal peptide (GGH-ΔN ) confers the significant drug resistance of ALL cells to the antifolates MTX and RTX. In addition, ALL cells harboring GGH-ΔN show high susceptibility to the change in folates, and glycosylation is not responsible for these phenotypes elicited by GGH-ΔN . Mechanistically, the loss of signal peptide enhances intracellular retention of GGH and its lysosomal disposition. Our findings clearly define the in vivo role of GGH in ALL cells and indicate a novel modulation of the GGH function, suggesting new avenues for ALL treatment in future.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Linfócitos/efeitos dos fármacos , Sinais Direcionadores de Proteínas/genética , gama-Glutamil Hidrolase/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Edição de Genes/métodos , Glicosilação , Células HeLa , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Metotrexato/farmacologia , Ácido Poliglutâmico/metabolismo , Quinazolinas/farmacologia , Tiofenos/farmacologia , gama-Glutamil Hidrolase/deficiência
14.
J Virol ; 96(4): e0211721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935441

RESUMO

Zika virus (ZIKV) is a flavivirus that is mainly transmitted by Aedes mosquitos and normally causes mild symptoms. During the outbreak in the Americas in 2015, it was associated with more severe implications, like microcephaly in newborns and the Guillain-Barré syndrome. The lack of specific vaccines and cures strengthens the need for a deeper understanding of the virus life cycle and virus-host interactions. The restriction factor tetherin (THN) is an interferon-inducible cellular protein with broad antiviral properties. It is known to inhibit the release of various enveloped viruses by tethering them to each other and the cell membrane, thereby preventing their further spread. On the other hand, different viruses have developed various escape strategies against THN. Analysis of the cross-talk between ZIKV and THN revealed that, despite a strong induction of THN mRNA expression in ZIKV-infected cells, this is not reflected by an elevated protein level of THN. Contrariwise, the THN protein level is decreased due to a reduced half-life. The increased degradation of THN in ZIKV infected cells involves the endo-lysosomal system but does not depend on the early steps of autophagy. Enrichment of THN by depletion of the ESCRT-0 protein HRS diminishes ZIKV release and spread, which points out the capacity of THN to restrict ZIKV and explains the enhanced THN degradation in infected cells as an effective viral escape strategy. IMPORTANCE Although tetherin expression is strongly induced by ZIKV infection there is a reduction in the amount of tetherin protein. This is due to enhanced lysosomal degradation. However, if the tetherin level is rescued then the release of ZIKV is impaired. This shows that tetherin is a restriction factor for ZIKV, and the induction of an efficient degradation represents a viral escape strategy. To our knowledge, this is the first study that describes and characterizes tetherin as a restriction factor for the ZIKV life cycle.


Assuntos
Antígenos CD/metabolismo , Zika virus/fisiologia , Animais , Antígenos CD/genética , Fatores de Restrição Antivirais/genética , Fatores de Restrição Antivirais/metabolismo , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Meia-Vida , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Inibidores de Proteassoma/farmacologia , RNA Mensageiro/genética , Liberação de Vírus
15.
Cancer Lett ; 525: 179-197, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34752845

RESUMO

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitous cation channel possessing kinase activity. TRPM7 mediates a variety of physiological responses by conducting flow of cations such as Ca2+, Mg2+, and Zn2+. Here, we show that the activation of TRPM7 channel stimulated by chemical agonists of TRPM7, Clozapine or Naltriben, inhibited autophagy via mediating Zn2+ release to the cytosol, presumably from the intracellular Zn2+-accumulating vesicles where TRPM7 localizes. Zn2+ release following the activation of TRPM7 disrupted the fusion between autophagosomes and lysosomes by disturbing the interaction between Sxt17 and VAMP8 which determines fusion status of autophagosomes and lysosomes. Ultimately, the disrupted fusion resulting from stimulation of TRPM7 channels arrested autophagy. Functionally, we demonstrate that the autophagy inhibition mediated by TRPM7 triggered cell death and suppressed metastasis of cancer cells in vitro, more importantly, restricted tumor growth and metastasis in vivo, by evoking apoptosis, cell cycle arrest, and reactive oxygen species (ROS) elevation. These findings represent a strategy for stimulating TRPM7 to combat cancer.


Assuntos
Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas R-SNARE/genética , Canais de Cátion TRPM/genética , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clozapina/farmacologia , Humanos , Lisossomos/efeitos dos fármacos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Metástase Neoplásica , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/agonistas , Zinco/farmacologia
16.
Mol Cancer Res ; 20(3): 446-455, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782372

RESUMO

AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting.In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS: Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.


Assuntos
Compostos de Anilina/uso terapêutico , Benzocicloeptenos/uso terapêutico , Lisossomos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Triazóis/uso terapêutico , Compostos de Anilina/farmacologia , Autofagia , Benzocicloeptenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Transdução de Sinais , Transfecção , Triazóis/farmacologia , Receptor Tirosina Quinase Axl
17.
Mol Cell Endocrinol ; 540: 111505, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774699

RESUMO

Although the follicle-stimulating hormone (FSH) plays a vital role in male reproduction, the molecular relationships among FSH, autophagy, and the secretory function of Sertoli cells remain largely undetermined. In this study, we sought to investigate the effects of FSH on dairy goat Sertoli cell autophagy and the role of autophagy in protein clearance. FSH treatment of primary Sertoli cells was found to enhance the expression level of LC3-II, reduce p62 degradation and the number of lysosomes, and downregulate the levels of LAMP2 protein and lysosomal gene mRNAs. Further analyses revealed that starvation-induced autophagy promotes the translocation of transcription factor EB (TFEB) from the cytoplasm to nucleus and its binding to the promoter region of LAMP2, whereas FSH suppresses the nuclear translocation of TFEB. Moreover, we found that the FSH-mediated inhibition of autophagy extends the biological half-lives of androgen-binding protein (ABP), glial-derived neurotrophic factor (GDNF), and stem cell factor (SCF) and promotes the secretion of these proteins. Collectively, these observations indicate that FSH inhibits autophagy by reducing lysosomal biogenesis, which is associated with the suppression of TFEB nuclear translocation via activation of the PI3K/Akt/mTOR pathway, thereby extending the biological half-lives and enhancing the expression of ABP, GDNF, and SCF in dairy goat Sertoli cells.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Lisossomos/metabolismo , Proteólise/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Animais , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Cabras , Lisossomos/efeitos dos fármacos , Masculino , Células de Sertoli/metabolismo
18.
Aging Cell ; 21(1): e13532, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905649

RESUMO

The "rejuvenating" effect of growth differentiation factor 11 (GDF11) is called into question recently, and its role, as well as plausible signaling mechanisms in liver senescence, is unclear. To overexpress or knockdown GDF11, aged male mice are injected with a single dose of adeno-associated viruses-GDF11 or adenovirus-small hairpin RNA-GDF11, respectively. GDF11 overexpression significantly accelerates liver senescence in aged mice, whereas GDF11 knockdown has opposite effects. Concomitantly, autophagic flux is impaired in livers from GDF11 overexpression mice. Conversely, GDF11 knockdown increases autophagic flux. Moreover, rapamycin successfully restores the impaired autophagic flux and alleviates liver senescence in GDF11 overexpression mice, while the GDF11 knockdown-mediated benefits are abolished by the autophagy inhibitor bafilomycin A1. GDF11 leads to a drop in lysosomal biogenesis resulting in defective autophagic flux at autophagosome clearance step. Mechanistically, GDF11 significantly activates mammalian target of rapamycin complex 1 (mTORC1) and subsequently represses transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. Inhibition of mTORC1 or TFEB overexpression rescues the GDF11-impaired autophagic flux and cellular senescence. Hepatocyte-specific deletion of GDF11 does not alter serum GDF11 levels and liver senescence. Collectively, suppression of autophagic activity via mTORC1/TFEB signaling may be a critical molecular mechanism by which GDF11 exacerbates liver senescence. Rather than a "rejuvenating" agent, GDF11 may have a detrimental effect on liver senescence.


Assuntos
Autofagia/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Fígado/patologia , Lisossomos/efeitos dos fármacos , Animais , Senescência Celular , Humanos , Masculino , Camundongos
19.
Oncol Rep ; 47(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958115

RESUMO

Pancreatic cancer is one of the leading causes of cancer­related mortality and has the lowest 5­year survival rate. Therefore, novel strategies are urgently required to treat pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) cells rely on enhanced lysosomal function for survival and proliferation to facilitate the degradation of contents accumulated via autophagy and macropinocytosis. Previously, we have reported that the combination of epidermal growth factor receptor/HER2 inhibitor lapatinib and sphingosine analog fingolimod (FTY720) confers a significant cytostatic effect in lung cancer cells. In the present study, the combined effects of these drugs on PDAC cell lines, BxPC­3, KP­4, PANC­1 and MIA PaCa­2, were examined. It was observed that FTY720 enhanced the lapatinib­induced cytotoxic effect and caused non­canonical and lysosome­dependent death in PDAC cells. Lapatinib and FTY720 induced lysosomal swelling and inhibited lysosomal acidification. Combination treatment with lapatinib and FTY720 increased lysosomal membrane permeability, induced mitochondrial depolarization, induced endoplasmic reticulum stress and disturbed intracellular calcium homeostasis. Additionally, the cytotoxic effect of lapatinib was enhanced by hydroxychloroquine or the CDK4/6 inhibitor abemaciclib, both of which induce lysosomal dysfunction. Collectively, these results indicated that the lysosome­targeted drug combination induces multiple organelle dysfunction and exerts a marked cytotoxic effect in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Cloridrato de Fingolimode/farmacologia , Lapatinib/farmacologia , Lisossomos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hidroxicloroquina/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia
20.
Toxicol In Vitro ; 78: 105250, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34601064

RESUMO

Abrus precatorius is a highly toxic seed containing the poison abrin. Similar in properties to ricin, this toxin binds to ribosomes causing cessation of protein synthesis and cell death. With an estimated human lethal dose of 0.1-1 µg/kg, it has been the cause of fatalities due to accidental and intentional ingestion. In present study, we profiled seven human cell lines of different organ origin, for their sensitivity against abrin toxicity. These cell lines are, A549, COLO 205, HEK 293, HeLa, Hep G2, Jurkat, SH-SY5Y and derived from lung, intestine, kidney, cervix, liver, immune and nervous system respectively. MTT, NR, CVDE and LDH assays have been used to determine their response against abrin toxin. Among these cell lines A549 was the most sensitive cell line while Hep G2 was found least sensitive cell lines. Hep G2 cells are shown to have mitochondrial resistance and delayed generation of oxidative stress compared to A549 cells. Remarkable variation in sensitivity against abrin toxicity prompted the evaluation of Bcl2, Bax and downstream caspases in both cells. Difference in Bcl2 level has been shown to play important role in variable sensitivity. Findings of present study are helpful for selection of suitable cellular model for toxicity assessment and antidote screening.


Assuntos
Abrina/toxicidade , Linhagem Celular/efeitos dos fármacos , Abrus/química , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...